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How and why might extreme air pollution events change? 
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How and why might extreme air pollution events change? 

à  Need to understand how different 
processes influence the distribution 
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à Change in symmetry? 
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pollutant sources 

Degree of mixing 

•  Meteorology (e.g., stagnation vs. ventilation) 

T Fires  NOx OH 

PAN H2O 

•  Changing global emissions (baseline) 

•  Changing regional emissions (episodes) 
à Shift in mean? 

à Change in symmetry? 
Today’s Focus 

VOCs 
Deposition 

•  Feedbacks (Emis, Chem, Dep) 



EVT methods describe the high tail of the observed ozone 
distribution (not true for Gaussian) 

JJA MDA8 O3 1987-2009 at CASTNet Penn State site 
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Generalized Pareto Distribution Model (ppb) 

EVT Approach:  
(Peak-over-threshold) 
for MDA8 O3>75 ppb 

Gaussian: 
Poor fit 
for extremes 

1988-­‐1998	
  
1999-­‐2009 

Rieder et al., ERL 2013 



EVT methods enable derivation of “return levels”  
for JJA MDA8 O3 within a given time period from GPD fit 

CASTNet site: Penn Station, PA 
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Rieder et al., ERL 2013 

1988-­‐1998	
  
1999-­‐2009 à Sharp decline in return levels 

 between early and later periods  
 (NOx SIP call) 

à Consistent with prior work [e.g., 
Frost et al., 2006; Bloomer et al., 
2009, 2010]  

à Translates air pollution changes into 
 probabilistic language 
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Apply methods to all EUS 
CASTNet sites to derive 
1-year and 5-year return levels 



Decreases in 1-year return levels for JJA MDA8 O3  
over EUS following NOx emission controls 

Rieder et al., ERL 2013 

1988-1998 1999-2009 

à 1-yr return level decreases by 2-16 ppb 
à 1-year levels remain above the NAAQS threshold (75 ppb) 

across much of EUS  



1999-2009 5-year return levels for JJA MDA8 O3  
over EUS now similar to 1988-1998 1-year levels 

Rieder et al., ERL 2013 

1-year Return Levels 
1988-1998 

1999-2009 

[Rieder et al. 2013] 

 
à 5-yr return levels decrease by up to 20 ppb (not shown) 

5-year Return Levels 
1999-2009 



How will high-O3 events evolve with future changes in 
emissions and climate?  

   Tool:  GFDL CM3 chemistry-climate model 

Donner et al., J. Climate, 2011;  
Golaz et al., J. Climate, 2011; 
Naik et al., submitted  
Horowitz et al., in prep 

•  ~2°x2°; 48 levels 
•  over 6000 years of climate simulations that 

include chemistry (air quality)  
•  Options for nudging to re-analysis + global 

high-res ~50km2 [Lin et al., JGR, 2012ab] 
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Climate / Emission Scenarios: Representative Concentration Pathways (RCPs) 
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Surface ozone decreases most at high tail 
GFDL CM3 model, RCP4.5 scenario: (2046-2055) – (2006-2015) 

MEAN  90th percentile  99th percentile  

H. Rieder -40    -30      -20      -10       0 ppb 



Surface ozone decreases most at high tail 
GFDL CM3 model, RCP4.5 scenario: (2046-2055) – (2006-2015) 

MEAN  90th percentile  99th percentile  

Influence of US NOx 
emission reductions 
under RCP4.5:  
Strongly decrease 
regional pollution 
episodes 

GEOS-Chem Model Simulations (4°x5°)!
Daily 1-5pm O3 over USA, summer 1995!

H. Rieder 

Fiore et al., 2002; West and Fiore, 2005 

-40    -30      -20      -10       0 ppb 



What controls well-documented O3-Temp correlation in polluted regions?  
[e.g., Bloomer et al., 2009; Camalier et al., 2007; Cardelino and Chameides, 1990; Clark and Karl, 

1982; Korsog and Wolff, 1991] 

Turner et al., ACP, 2013 
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Number of mid-latitude cyclones 

NE USA: anti-correlation between  
observed number of high-O3 events  
and storm counts (both detrended)  
[Leibensperger et al, ACP, 2008] 

Slope = -4.2 O3 events/storm 
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How does 
climate 
warming 
influence 
storms and 
O3 events? 

Region for counting storms 

Region for counting 
O3 events 

Slope = -4.2 O3 events/storm 

MCMS storm tracker [Bauer et al., 2013] 
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What controls well-documented O3-Temp correlation in polluted regions?  
[e.g., Bloomer et al., 2009; Camalier et al., 2007; Cardelino and Chameides, 1990; Clark and Karl, 

1982; Korsog and Wolff, 1991] 

RCP4.5 RCP8.5 

GFDL CM3 model projects declines in storm 
counts with climate warming… 

…but weak relationship 
with high-O3 events: 
model problem?  
change in controlling 
factors?  
Simpler diagnostic of 
large-scale circulation 
changes? 

RCP4.5*_WMGG 

Turner et al., ACP, 2013 
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Summertime surface O3 variability aligns with the 500 hPa 
jet over Eastern N. America 

Observations 
(CASTNET + MERRA reanalysis) 

Barnes & Fiore, submitted 

Jet  

GFDL CM3 model 
Historical simulations 

Jet  



Summertime surface O3 variability aligns with the 500 hPa 
jet over Eastern N. America 

Observations 
(CASTNET + MERRA reanalysis) 

Barnes & Fiore, submitted 

Jet  

GFDL CM3 model 
Historical simulations 

Jet  

NOx emissions peak south of jet 
where mean MDA8 O3 highest 

Standard deviation of zonally 
averaged JJA MDA8 O3 
à Max at the jet latitude 



Peak latitude of summertime surface O3 variability over 
Eastern N. America follows the jet as climate warms 

Barnes & Fiore, submitted 

Each point = 10 year 
average; ensemble mean 
where multiple members are 
available 



Peak latitude of summertime surface O3 variability over 
Eastern N. America follows the jet as climate warms 

Barnes & Fiore, submitted 

RCP8.5: most warming, 
Largest jet shift 

Each point = 10 year 
average; ensemble mean 
where multiple members are 
available 



Ozone relationship with temperature varies with jet location 
Barnes & Fiore, submitted 

GFDL CM3 RCP4.5*_WMGG (air pollutants at 2005 levels): Decadal averages 
 Correlation (MDA8, Tmax) OLS Slope (MDA8, Tmax) 

Arrows indicate change at a 
given location for 

2006-2015 à 2086-2095 



Ozone relationship with temperature varies with jet location 
Barnes & Fiore, submitted 

Correlation (MDA8, Tmax) OLS Slope (MDA8, Tmax) 

Arrows indicate change at a 
given location for 

2006-2015 à 2086-2095 

à Observed local O3:T relationships may not hold if large-scale circulation shifts 
à Differences in simulated jet positions à model discrepancies in O3 responses? 
à  Is a jet location a useful predictor? i.e., quantitative relationships? 

GFDL CM3 RCP4.5*_WMGG (air pollutants at 2005 levels): Decadal averages 
 



Shifting jet: Implications for extreme air pollution events? 

Barnes & Fiore, submitted 

90th percentile, RCP8.5 
GFDL CM3 model 

500 hPa  
Jet location 

2006-2015 
2086-2095 

NOx emissions (10-2 Tg NO summer-1)  

Regional NOx emission reductions decrease 
90th percentile values 



Shifting jet: Implications for extreme air pollution events? 

Jet shift + rise in baseline O3 (methane)? 
 
à Targeted simulations to separate roles of 
     rising CH4, decreasing NOx from large-    

 scale circulation changes 

Barnes & Fiore, submitted 

90th percentile, RCP8.5 
GFDL CM3 model 

500 hPa  
Jet location 

2006-2015 
2086-2095 

NOx emissions (10-2 Tg NO summer-1)  

Regional NOx emission reductions decrease 
90th percentile values 



Simple tracer mimics climate-driven changes in summertime 
PM2.5 over polluted N. mid-latitude regions 

CLIMATE CHANGE ONLY AM3 idealized simulations (20 years) 

Fang et al., GRL, 2013 

Aerosol 
Tracer (ppb) 

PM2.5 (ug m-3) 

JJA daily mean over Northeast USA 

(fixed lifetime, 
deposits like 
sulfate)  

Comparison of 1990s distribution Change from 1990s to 2090s due to warming climate 
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Simple tracer mimics climate-driven changes in summertime 
PM2.5 over polluted N. mid-latitude regions 

CLIMATE CHANGE ONLY AM3 idealized simulations (20 years) 

Fang et al., GRL, 2013 

Aerosol 
Tracer (ppb) 

PM2.5 (ug m-3) 

JJA daily mean over Northeast USA 

à Cheaper option to reconstruct AQ info from simple tracer in physical climate 
 models (e.g., high res) 

à Opportunity to further test utility in ongoing chemistry-climate simulations        
    (CCMI effort: http://www.igacproject.org/CCMI) 
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Characterizing U.S. air pollution extremes and influences from 
changing emissions and climate: Summary and Next Steps 

àAssess robustness across models (CCMI effort) 
àComputationally cheap AQ info from GCMs?  

•  Applied EVT to derive return levels for O3 observed over EUS 
•  New metric for quantifying success of NOx emission controls 

 [Rieder et al., ERL, 2013] 
à Apply to PM2.5, precipitation, future model projections  
à Event persistence? Model bias correction?  

•  NEUS summer cyclones decline in GFDL CM3 warming simulations 
•  Weak relationship with high-O3 events [Turner et al., ACP, 2013] 

à Connect with large-scale circulation changes 
à  Identify key drivers of extreme events in other regions 

•  O3 variability aligns with the 500 hPa jet over NE N. America 
•  Jet shifts can influence O3:T [Barnes & Fiore, submitted] 

à Tease apart role of climate vs. emissions (NOx and CH4) 
à Explore predictive power and extend beyond O3  
à Relevant to model differences in O3 response to climate?  
    [Weaver et al., 2009; Jacob & Winner, 2009; Fiore et al., 2012] 

•  Synthetic aerosol tracer captures climate-driven change (wet 
deposition) in PM2.5 distribution [Fang et al., GRL, 2013 (in press)] 


